Multistage Background Field Removal (MUBAFIRE)—Compensating for B0 Distortions at Ultra-High Field

نویسندگان

  • Johannes Lindemeyer
  • Ana-Maria Oros-Peusquens
  • N. Jon Shah
  • Wolfgang Rudolf Bauer
چکیده

The investigation of tissue magnetic susceptibility and the resultant magnetic field offers a new avenue for quantitative tissue characterisation by MRI. One crucial step in mining the phase and field data for relevant tissue information is the correction of externally induced field shifts. This article outlines a multistep approach comprising several methodologies for background field removal. The virtues of B0 long-range variation detection and compensation of more localised external disturbances are unified in a sequential filter chain. The algorithm is tested by means of a numerical Monte Carlo simulation model and applied to in vivo measurements at 3T and 9.4T as well as to a fixed brain tissue measurement at 9.4T. Further, a comparison to conventional filter types has been undertaken.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A method for the dynamic correction of B0-related distortions in single-echo EPI at 7 T

We propose a method to calculate field maps from the phase of each EPI in an fMRI time series. These field maps can be used to correct the corresponding magnitude images for distortion caused by inhomogeneity in the static magnetic field. In contrast to conventional static distortion correction, in which one 'snapshot' field map is applied to all subsequent fMRI time points, our method also cap...

متن کامل

Shimming and MRS

Adjustment of the static magnetic field homogeneity, commonly known as the B0 shimming or simply shimming, is essential for magnetic resonance spectroscopy because it determines the spectral resolution which is critical for reliable metabolite quantification. Inhomogeneities in the B0 field, resulting primarily from susceptibility differences between air and tissue, are scaled with the B0 field...

متن کامل

FIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) by

FIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) Zhenghui Zhang, PhD University of Pittsburgh, 2006 This thesis concentrates on the reduction of field (both main field B0 and RF field B1) inhomogeneity in MRI, especially at high B0 field. B0 and B1 field inhomogeneity are major hindrances in high B0 field MRI applications. B1 inhomogeneity will lead to spatially v...

متن کامل

Spatiotemporal characterization of breathing-induced B0 field fluctuations in the cervical spinal cord at 7T

Magnetic resonance imaging and spectroscopy of the spinal cord stand to benefit greatly from the increased signal-to-noise ratio of ultra-high field. However, ultra-high field also poses considerable technical challenges, especially related to static and dynamic B0 fields. Breathing causes the field to fluctuate with the respiratory cycle, giving rise to artifacts such as ghosting and apparent ...

متن کامل

System Identification and Signal Processing for PID Control of B0 Shim Systems in Ultra-High Field Magnetic Resonance Applications

Magnetic resonance (MR) scanners are important tools in medical diagnostics and in many areas of neuroscience. MR technology is moving towards ultra-high field (UHF) 7T and 9.4T scanners which provide more signal intensity. However they also suffer from inhomogeneity of the static (B0) magnetic field which can lead to artifacts and uninterpretable data. B0 shimming is a technique used to reduce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015